

Définition

fondations superficielles.

I.

2I2D AC : Architecture & Construction

2D

Cours: Les fondations

Le but de ce chapitre est de **dimensionner** des **fondations** ; donc de **déterminer** la **largeur** et **l'épaisseur** d'une **fondation**.

Les fondations d'un ouvrage sont les éléments assurant la

de cette structure sur le	
Les fondations reportent les charges	G (poids propre) et les charges Q
à un niveau convenable et les répartissent sur une co u	iche de terrain plus ou moins étendue et de résistance
adéquate en assurant la stabilité et la sécurité de la fo	ondation.
II. <u>Les différents types de fondation</u>	
	de la structure notamment, il convient
de choisir le type de fondations le plus adapté afin de	limiter les tassements.
Fondations superficielles	Fondations profondes
Semelles continues sous murs	> Puits
Semelles isolées	> Pieux
Semelles excentrées	Micro-pieux
> Radier	Parois associées à la structure
La distinction entre fondations superficielles et	profondes se fait selon la valeur du rapport de la
profondeur de la fondation D s	sur la largeur de la fondation B.
D B	D 8

D'un point de vue économique, les fondations profondes sont plus que les

2I2D AC: Architecture & Construction

Cours: Les fondations

1) Les fondations superficielles

On distingue 3 types de semelles pour les **fondations superficielles** :

- Les isolées,
- Les **filantes** (ou continues),
- Les (ou dallage).

Semelles isolées	Semelles filantes (ou continues)	Radiers (ou dallage)
B		
B ≈ L	B × L ≪ Aire de l'ouvrage porté	$B \times L = Aire de l'ouvrage porté$

2) <u>Les fondations profondes</u>

Un pieu transmet au sol les charges qu'il supporte :

- Par l'appui de sa base sur le sol résistant,
- Par le entre le sol et le pieu.

Page 2 sur 5

2I2D AC : Architecture & Construction

2D

Cours: Les fondations

Les fondations servent à	de manière égale le	de la	sur le sol.
Les éléments nécessaires au calcu	sont:		
> La	sur le terrain (charge).		
La limite de pression au s	ol ().		
Avec ces éléments, il est possible	de calculer de la fo n	idation.	
1. Force appliquée sur le ten	<u>crain</u>		
La force appliquée sur le terrain	dépend de la masse de la constructi	i on , ainsi que de celle	de la fondation
Dans la plupart des cas, il est néce	essaire de calculer cette charge. La n	nasse multipliée par	l'accélération en
chute libre nous donne la charge e	n newton .		
Avec:			
o F : le poids de la construc	tion et de la fondation (ou la charge	e) en	[N],
o m: la masse de la constru	ction et de la fondation en	,	
o g : l'intensité du champ d	e pesanteur g =		
2. Pression admissible au so	<u>.l</u>		
Pour pouvoir calculer les dime n	sions d'une fondation, il est néces	ssaire de connaître J	la
au sol. La press	ion admissible est exprimée en	(ou N /	m²). La pression
admissible est notée σ .			
S'il n'existe aucune étude préalable	e de la résistance du sol, on peut util	liser les valeurs ci-des	ssous pour les cas
simples (par exemple les installati	ons de chantier). Si le sol est de qua	l ité irrégulière (par e	exemple une zone
de remblai), il est indispensable de	e procéder à une étude		

Type de terrain	Portance	Pression admissible σ
Roche	Très bonne portance	0,7 – 5 N/mm ²
Gravier et sable	Très bonne portance	0,4 N/mm²
Terrain dur (marne, glaise compacte)	Très bonne portance	0,4 N/mm²
Sable grossier	Bonne portance	0,3 N/mm²
Sable fin	Portance modérée	0,2 N/mm²
Terrain semi dur (glaise sableuse)	Portance modérée	0,2 N/mm²
Terrain tendre (argile aquifère, remblais)	Faible portance	0,03 – 0,1 N/mm²

2I2D AC: Architecture & Construction

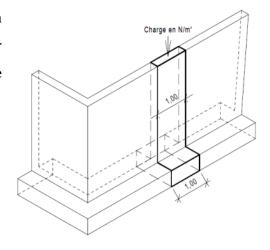
2D

Cours: Les fondations

Si le **terrain** est de **très mauvaise qualité**, tu pourras facilement le remarquer. En effet, si ton **pied provoque** une **empreinte** dans le terrain, la **portance** de ce terrain est **inférieure à 0,05 N/mm²**.

3. Calcul de l'aire de la fondation

Pour calculer l'aire d'une fondation en mm², on divise la charge en N par la pression admissible du terra	ain
en N/mm ² . Nous obtenons donc un résultat en mm ² (aire de la fondation).	

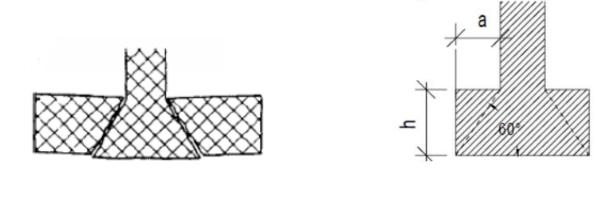

.....

Avec:

- \circ σ : la pression admissible en (ou N/m²),
- \circ **A**: l'aire de la fondation en (ou m²).

IV. Calcul des dimensions d'une fondation

- Les **fondations** (sous un pilier par exemple),
- Les **fondations** (sous un mur par exemple),
- Les
- ➤ Pour trouver les **dimensions** d'une **fondation**, on effectue la **racine carrée** de **l'aire** de fondation.
- ➤ Pour trouver les **dimensions** d'une **fondation**, on **divise l'aire** de fondation par un des **côtés**.
- La charge sur une fondation linéaire est considérée sur un mètre de mur dans la partie la plus défavorable. Pour calculer la largeur d'une fondation linéaire, on divise l'aire de fondation en m² par 1,00 m.


2I2D AC: Architecture & Construction

Cours: Les fondations

V. Epaisseur d'une fondation non armée

Les **forces** se **répartissent** dans le **béton** avec un **angle de 60°**. Par la trigonométrie, on peut trouver l'épaisseur de la **fondation** "h" en **multipliant** la valeur de "a" par la **tangente de 60°**. La tangente de 60° correspond à la

Si vous ne tenez pas compte de l'angle de répartition des forces dans le béton pour le calcul de l'épaisseur de la fondation, vous risquez d'avoir une **rupture** de la **fondation**!

L'épaisseur minimale d'une fondation est de 30 cm. Lorsque l'épaisseur de la fondation est grande, il faut vérifier si une fondation armée ne serait pas plus économique. Dans ce cas, il faut faire appel à un!